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Abstract 
Flood is a natural disaster when causes damage and 

loss, especially in urban areas that are inhabited by 

many people and have many properties. The goal of 

this study is to map rapidly the flooded areas in North 

Aceh district on January, 5 2022 using multi-temporal 

SAR Sentinel-1A images through visual interpretation 

and semi-automated interpretation methods including 

thresholding and support vector machine (SVM). 

Visual interpretation relied on multi-polarization 

image of VH-VV with median filters of 3x3 and 5x5.  

 

This study produced the flooded area maps from three 

methods used with an area of each method: visual 

interpretation (422.86 ha), thresholding (791.22 ha) 

and SVM (1084.76 ha). According to the comparison 

with the result generated from visual interpretation 

using Planetscope-3A, SVM method has the similar 

result in the flooded areas with an area of 1001.52 ha. 

This study also analysed impact of flood event against 

land cover referring to Sentinel-2 10-Meter Land 

Use/Land Cover of ESRI and showed that class of 

cultivated crops is most affected. Results show that this 

study can be very helpful in damage and loss 

assessment of flood event and can be reference for 

urban planning management in order to face the 

climate change. 
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Support Vector Machine, Thresholding, Planetscope-3A. 

 

Introduction 
Flood is an overflow or inundation that comes from a river 

or other body of water on the ground because of long-lasting 

rainfall3,26 and it becomes disaster when causes damage and 

loss to lives, infrastructures and environments.18,21 It 

happens when people live in “wrong” condition and ways 

such as the excessive urbanization25 and the factors of 

logging, paving and building construction so that soil and 

vegetation are difficult to absorb the water from 

downpours.27,51 Floods occurring in urban areas result in the 

big impact of economic loss and injuries in community.37 

Understanding the flood mitigation is essential for disaster 

risk reduction before and after events utilizing active remote 

sensing for floods mapping.22 Flood can be classified as the 

quick and sudden disaster types but are among few in this 

category that can be well predicted, anticipated and 

controlled to a great extent.21 The rapid needs for flood 

mitigation require us to take advantage of radar satellite that 

can adapt to rapid flood events and conditions at the location. 

Mapping of flooded areas produces a historical sources-

based data that is useful for natural disaster assessment 

highlighted to the occurrence rate, duration and spatial 

extent.20 

 

Radar satellite records the earth by using microwave energy 

that has the advantages: able to penetrate atmosphere in all 

weathers, especially in rainy season.31  

 

It provides the opportunity for development of radar remote 

sensing in observing large parts of Earth’s land including 

flood observation.4 Sentinel-1A satellite is the best data 

source for floods mapping because its synthetic aperture 

radar (SAR) sensor produces the images once in 6–12 days. 

SAR sensor has been a valuable means for hydrological 

assessment for the three decades.17 The availability of these 

close time series images with its complex coherence 

constitutes an advantage from at least two points of view: 

allows to infer precious information about the nature and 

genesis of the recurrent floods and prevents the main errors 

consisting of spatial and temporal decorrelations.6  

 

SAR Sentinel-1A sensors have the high potential to detect 

flood extents in urban areas because their amplitude enables 

the easy identification by distinguishing the land and water 

or water bodies contrast. 1,15,34,45 Change detection of flood is 

good to perform using multi-temporal SAR images of pre-

flooding and flooding in order to mask out permanent water 

bodies and flood water.50 Scattering of bare soil gets 

decreased and also reduces factor resisting coherence which 

microwave will interact directly to water surface with 

specular reflection alongside vegetated areas and urban 

areas.  

 

Flooded areas have the low intensity because the water 

surface roles as specular reflector, causing water bodies look 

as darker or black tone. Change detection method is effective 

for rapid monitoring against the abrupt change to the land 

surface in order to derive pattern of change caused by 

flood.36,52  

 

The difficulties of finding an adequate image in the archive 

and of correctly interpreting all detected changes in 

backscatter represent the main limitations of flooding-

related change detection.12 Analysis of images obtained in 
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non-flood condition is useful to distinguish permanent and 

transient water bodies and to accurately delineate the 

floodwaters on any given day.12,44 

 

Flood detection can be done through visual interpretation 

method based on characteristics of earth surface terrain that 

can show condition of environment in an area using several 

variation of SAR image processing to generate the best 

image visual appearance. Important information in image 

can be extracted through multi-polarization utilizing 

different image polarization types.11 Multi-polarization 

system can enhance radar capabilities in monitoring and 

identifying objects on earth’s surface.23,29 

 

Threshold-based methods also can be used for flood 

detection in order to obtain the best appearance by separating 

the water and high land pixels.34 An adaptive threshold is 

essential for change detection to map the flooded bare soils 

and flooded built-up areas.5 Results of flood mapping with 

homogeneous land surfaces using threshold are quite 

sensitive to the chosen threshold values.50 Besides the 

quality of change image, the quality of the thresholding 

highly affects the overall performance of change detection.28 

 

Another method that can be used to detect floods is 

supervised classification. Support Vector Machine (SVM) is 

one of the new generation learning systems based on recent 

advances in statistical learning theory delivering State of the 

Art performance in real-world application.10 SVM has been 

widely used for land cover classification but not much for 

flood study. SVM method has been carried out in several 

studies for flood prediction analysis by distinguishing 

flooded and non-flooded areas.24,46,49 SVM in flooded area 

classification can generate a hyperplane of water level 

change on the basis of the rising in water level at flood 

event.49 

 

The purpose of this study is to map the flooded area with 

case study of flooding in North Aceh, 5 January 2022, using 

methods of visual interpretation and semi-automated 

interpretation including thresholding and SVM.  

 

The benefits of this study are to find out the best method to 

map the flood quickly in urban area through radar image to 

know the flood-prone areas and can be used as a tool in 

supporting the flood mitigation plan management. 

Identification of flood prone areas is useful to communicate 

flood disaster information to concern authority as well as to 

the people.8 

 

Material and Methods 
Study area: In early 2022, most of the North Aceh area 

experienced the devastating flood event from 1 January 2022 

to 7 January 2022 caused by high rain frequency and the 

rising river level over several days. This flood event caused 

damage and loss of infrastructures and victim especially in 

urban area.  

 

This study focused in urban area of North Aceh, Aceh 

Province with an area of 80.01 km2 (96o57’28.7” E 

5o15’39.8” N–97o2’49.0” E 5o10’55.7” N). The study area 

has the average height of 26 meters above sea level (85 feet) 

(Figure 1).  

 

 
Figure 1: Study area 
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Data: Data used for this study are multi-temporal SAR 

Sentinel-1A images. To select an adequate reference image, 

images should have been acquired during the same season as 

the flood image, especially for applications in regions 

characterized by a pronounced seasonality in moisture and 

vegetation growth.12 Image of study area inundated by flood 

was captured by Sentinel-1A satellite with recording time of 

5 January 2022 and Sentinel-1A images on periods of pre-

flooding acquired from Copernicus Open Access Hub of 

ESA’s Sentinel missions were also used with recording time 

of 14 August 2021. The ancillary image used is high 

resolution image Planetscope-3A acquired from Planet 

missions. Land cover used for this analysis is Sentinel-2 10-

Meter Land Use/Land Cover of ESRI. Table 1 shows the 

details about the images used. 

 

Methodology 
Image processing: The main image processing steps began 

from calibration, speckle filtering and geometric correction. 

All these steps were included in multi-temporal image 

analysis techniques.13 These operations steps are typically 

performed to improve the overall accuracy.2 Calibration has 

the function to provide imagery in which the pixel value can 

be directly related to the radar backscatter of the scene.16 

Speckle noise in SAR images caused the degradation of the 

quality of the image and the difficulty of feature 

interpretation.16 It can be reduced either by spatial filtering 

or multi-looking processing to enhance the appearance 

contrast and improve the results of subsequent phases.13  

 

Geometric correction is intended to compensate variations 

of topographical distortion in order to make geometric 

representation of image as close as possible to the real world. 

It is able to solve the ambiguity and to discriminate these two 

features (water body and radar shadows).48 Figure 2(a) and 

3(b) images were generated from multi-looking by 

converting from slant range to ground range using number 

of range and azimuth looks of 1x3 and 2x4. 

 

Image in figure 2(a) provides the rougher display on land 

surface and strong natural black colour on water. Image in 

figure 2(b) provides the smoother display with less speckles 

on land surface, however provides more blur display on 

water due to the reduction of excessive pixel value between 

number of range and azimuth looks.

Table 1 

Data used in this study for flooded area mapping 

Data Spatial resolution Sensing time Track / Orbit Product level / Type 

Sentinel-1A 5 x 20 m 
14-08-2021 / 23:20:01 135 / 41332 L1 / SLC 

05-01-2022 / 23:20:01 135 / 39232 L1 / SLC 

DEM SRTM 30 m - - - 

ESRI land cover 10 m - - - 

Planetscope 3 m 07-01-2021 / 03:33:07 1025 3A / PS2 
 

  
               (a)                                                                (b) 

Figure 2: Images generated from multi-looking process 
 

 
                             (a)            (b)              (c) 

Figure 3: Images generated from speckle filtering process 
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It affects the performance in visual interpretation that is 

purely based on the applicability and the visual appearance 

of image. Image in range and azimuth of 1x3 still maintain 

information of water. Figure 3 shows images generated from 

speckle filtering and kernels of Lee sigma 7x7, Median 3x3 

and Median 5x5. 

 

Images generated from three speckle filtering methods 

(Figure 3) were assessed qualitatively. Lee Sigma 7x7 

(Figure 3a) reduces a lot of speckles and provides the smooth 

display of image, but creates a lot of disturbances that covers 

water information. Median 3x3 (Figure 3) provides the 

sharper tones on water with the strong black colour. Median 

5x5 (Figure 3) provides clear appearance on water body and 

removes most of speckles on surface land and water. 

Therefore, new images generated from combination of 

median filter with kernel of 3x3 and 5x5 were used as data 

of multipolarization method for visual interpretation. 

 

Multi-polarization is method of using multiple polarimetric 

returns to infer information of surface including vegetation 

and hydrology.38 Multi-polarization provides additional 

detail about surface features through the different and 

complementary echoes. It comes from dual polarization 

Level-1 Single Look Complex (SLC) products which 

contain complex values.16 By varying the polarization of 

transmitted signal and receiving several different polarized 

images from the same series of pulses, it can produce 

detailed information of observed surface. 

 

Flood detection: Flood detection in this study was 

conducted by change detection method to reduce the 

misclassifications.19 Flood detection by identifying of water 

in SAR image refers to the characteristics of low radiometric 

values.3 Intensity and coherence characteristics of flood 

water in COSMO-SkyMed and TerraSAR-X images for 

each case studies had the lower coherence than non-flooded 

ones.7,41 Both of these are required to produce an accurate 

inundation map in urban areas.30 

 

This study used visual interpretation and semi-automated 

interpretation methods including thresholding and SVM. 

Flood detection using remote sensing image is better to do 

through both visual and digital interpretation because they 

associate spectral signature each other with different land 

covers. The grey tones ranging from black to white of radar 

image are very helpful to interpret the flooded and non-

flooded areas.15 

 

Visual interpretation method for flood detection was done by 

delineating the flood prone areas producing the accurate and 

precise result.7 A simple visual interpretation consists of 

identifying changes between a pair of multi-temporal images 

through a simple color composition, allowing qualitative 

identification of flooded and non-flooded areas.13,33 Visual 

delineation was done using coherence value of pixel to 

distinguish flood with other land cover in urban area; 

flooded urban area has low coherence value and non-flooded 

urban area has high coherence value7,35 and colour 

difference. Color composition in SAR image can be 

generated utilizing its polarization variations by multi-

polarization method.  

 

This method is the need for rapid flood mapping after event 

because it is computationally efficient in fast visualization. 

Thresholding method consists of assigning to the semantic 

class “flooded” all pixels with a backscattering value lower 

than a given threshold.12 This method was conducted by 

selecting a threshold value to distinguish between water and 

non-water. This value is determined by analysing the pixel 

values indicated as flooded area in a histogram. The choice 

of threshold depends on environmental and system 

parameters (frequency band, polarization and observation 

angle).13 

 

Determination of threshold value in pre-flooding period 

referred to the result of permanent water body classification 

to prevent the misclassification of flood water value. The 

availability of pre-flooding and flooding images can 

generate the color composition difference of flooded and 

non-flooded areas and can show the change patterns in RGB 

association (R=image of difference between pre-flooding 

and flooding; G and B=flooding image).  

 

   
                             (a)            (b)              (c) 

Figure 4: Thresholding process 
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It will be helpful to show the temporarily inundated areas13,14 

and it will enhance the change effect in images and increases 

the interpretability.40 Figure 4 presents the scheme of 

thresholding process. 

 

Figure 4 presents the histogram generated from VH 

polarized image (Figure 4a) indicating that the pixel values 

of flooded area are at a range of 0.00 – 0.32 (Figure 4b). 

Figure 4(c) presents the result of flood water extraction 

generated from thresholding. Another digital interpretation 

method used in this study is Support Vector Machine 

(SVM). 

 

SVM is particularly appealing in the remote sensing field 

due to its ability in generalizing well with limited training 

samples.39 SVM is a non-parametric statistical learning 

algorithm aimed at binary classification by defining optimal 

hyperplane providing maximum margin separating two 

classes without assumption made on the underlying data 

distribution.47 The aim of SVM is to find a hyperplane that 

separates the dataset into a discrete predefined number of 

classes in a fashion consistent with the training examples.9,39 

Figure 5 shows the illustration of scenario in SVM. 

 

Training samples (cross and circle) that are at the maximum 

margin (edge of margin width boundary) are called support 

vectors (SVs). SVs lie on the margin defining the hyperplane 

of maximum margin. The optimal separation of hyperplane 

refers to the decision boundary that minimizes 

misclassification obtained in the training step.39 SVM 

assumes samples close to class boundary and work well with 

small training dataset quantity.43 It uses a recursive 

procedure to generate prior probability estimation for known 

and unknown classes.32 Training dataset selection is 

supposed to describe each class in feature space in order to 

distinguish different class through training samples selection 

or support vectors that are closest to SVM hyperplane. The 

number of training examples in this study is less than 30 

examples. SVs that do not contribute to the estimation of 

hyperplane location, are dropped which will be useful for an 

accurate classification of imagery.42 

 

 
Figure 5: Scheme illustration of SVM 



      Disaster Advances                                                                                                                        Vol. 16 (2) February (2023) 

35 

Results and Discussion 
Multi-polarization: Figure 6 shows images generated from 

multi-polarization technique using median filter 

combination with kernels of 3x3 and 5x5. Figure 6 shows the 

sample of water area (non-flooded and flooded area) 

including river water, crops water and pond water. Multi-

polarization image provides the clear information of flood 

water through its colour and pattern. Figure 6(a) shows areas 

of pre-flooding images in VH polarization presenting water 

in gray-black tones and colours. Figure 6(b) shows area 

samples of flooding images in multi-polarization presenting 

the clear display of land surface and the strong black colour 

of water. 

 

Flood detection: Figure 7 shows some of image samples 

classified by thresholding, SVM and visual interpretation. It 

can be observed that the flood polygons generated from 

thresholding have the similarity to SVM. Figure 7(b) shows 

that the flooded area could be detected successfully using 

thresholding method by recognizing the dark-coloured 

pixels as water and the light-coloured pixels as non-water. 

Figure 7(c) shows that SVM is able to detect the flooded area 

in details although the presence of water is commonly 

unclear through human eyes. It can be seen that there are 

several flooded areas detected in the location that are hard to 

be interpreted visually such as in the pond area. Figure 7(d) 

shows the flooded area map generated from visual 

interpretation using multi-polarization image. 

 

Figure 8 shows the flooded area maps generated from SAR 

Sentinel-1A using three methods: (a) visual interpretation, 

(b) thresholding and (c) SVM and compared to the 

classification result obtained by visual interpretation using 

Planetscope-3A image (Figure 8d). Figures 8(b) and 8(c) 

show that results generated from thresholding and SVM 

methods are more similar to the flooded area generated from 

visual interpretation using Planetscope-3A image. This fact 

is confirmed by the total flooded area as shown in table 2. 

Table 2 shows the total flooded area in study area according 

to each method. Each method provides an area of 422.86 ha 

(visual interpretation), 791.22 ha (thresholding), 1084.76 ha 

(SVM) and 1001.52 ha (Planetscope-3A). 

 

All methods have the similarity showing that floods 

dominate in river side and cultivated crop areas. However, 

the flooded area generated from visual interpretation method 

is very different from other methods. Figure 8(a) is showing 

that flooded areas generated by visual interpretation are not 

evenly distributed in study area. It may be due to the 

selection of classification features or training datasets 

between flood and non-flood water. 

 

 
(a) pre-flooding 

 
(b) flooding 

Figure 6: Images of pre-flooding and flooding in study area 

 

Table 2 

Total flooded area of three methods used in this study 

Method Flooded area (ha) 

Visual interpretation 422.86 

Thresholding 791.22 

SVM 1084.76 

Visual interpretation using Planetscope-3A 1001.52 

River 

Crop Pond 

River 

Crop Pond 



      Disaster Advances                                                                                                                        Vol. 16 (2) February (2023) 

36 

       

       

       

       
            (a) VH polarized image           (b) thresholding                        (c) SVM                  (d) visual interpretation 

Figure 7: Results of flood detection 

 

The problem of visual interpretation method is execution 

time. Using SAR Sentinel-1A image, delineating the water 

flood in the wide study area that has numerous 

heterogeneous surface features, takes more time. However, 

multi-polarized SAR Sentinel-1A image is very helpful in 

interpreting flood water relying on object, color, shape and 

pattern that can avoid the misclassification of flood water. 

This limitation can be solved by SVM and thresholding 

methods. SVM predicts flood water through the pixel value 

in image. Each pixel has the value representing each object 

based on a number of classes determined. However, SVM 

also has the limitations of flood objects misclassification 

which have the similar spectral response. 

 

Regarding this limitation, there are two points that should be 

improved in SVM classification: increasing of the training 

sample size and improving of training sample distribution 

representing each pixel value of flood water and non-flood 

water. Anyhow, it should be noted that the method of SVM 

is well-known by its small training datasets for 

classification. Thus, it should be adapted to the study area 

and object characteristics to classify.  

 

Analysis of the impact of flooding on land cover: Figure 

9(a) presents the land cover map covering the study area and 

figure 9(b) presents the land cover of study area affected by 

flood event using the flood data of SVM method. 

 

Land cover consist of classes of water (4.69 km2/5.86 %), 

trees (15.84 km2/19.80 %), grass (0.66 km2/0.83 %), crops 

(31.67 km2/39.59 %), built area (27.01 km2/33.76 %) and 

barren land (0.13 km2/0.16 %). It shows that floods are 

distributed in each land cover with the different area. 
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                                                   (a)                                                                                 (b) 

 
                                                   (c)                                                                                (d) 

Figure 8: Flooded area maps 

 
                                                   (a)                                                                            (b) 

Figure 9: Maps of land cover in study area affected by flood 
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Figure 10: Graphic of flooding impact against land cover in study area 

 

It can be seen that cultivated crop is the land cover affected 

so much by flood event. This fact is confirmed by the total 

flooded area as shown in graphic of figure 10 presenting the 

flooded area generated by each method. Each method shows 

that cultivated crop is the land cover mostly affected by 

flood. The total area of cultivated crops class inundated by 

the flood is 415.34 ha (visual interpretation), 682.65 ha 

(thresholding) and 871.26 ha (SVM). It is followed by water 

class with a total area of 7.18 ha (visual interpretation), 

101.69 ha (thresholding) and 188.37 ha (SVM) and built area 

class with a total area of 0.33 ha (visual interpretation), 6.12 

ha (thresholding) and 19.74 ha (SVM). 

 

Figure 10 shows that classes of grassland/herbaceous and 

barren have very little flood area. These results cannot be 

said to be accurate because these results follow the available 

land cover. These problems can be solved through the use of 

recent land cover obtained from very-high resolution image 

that can be applied using advanced deep learning methods. 

It will absolutely provide the detailed results of land covers 

affected by flood event. 

 

Conclusion 
This study compared the variability of flood detection 

application using methods of visual interpretation, 

thresholding and SVM from SAR Sentinel-1A image data. 

The results indicate that the three methods are able to 

classify the flood water and detect the flooded areas. The key 

point of this study is to determine and provide the most 

effective method in detecting the flooded area. This study 

found that result generated by SVM method has the better 

accuracy when compared with the result generated by visual 

interpretation method using high resolution image 

Planetscope-3A.  

 

More importantly, the results show that SAR Sentinel-1A 

image can become a data source used to detect rapidly the 

flooded area by flood detection methods. The flooded area 

maps generated from these methods are very helpful to 

assess the damage and loss of flood event and to map the 

flood prone areas. The future work shall deal with the 

application of Deep Learning for automatic flood detection 

that can be reference for urban planning management as a 

tool for flooded area mapping and alert systems in order to 

face the issues of climate change. 
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